Extending and applying PP language: An
answer set planning problem language

Claudia Zepeda! 2, Mauricio Osorio!, Christine Solnon?, and David Sol

! Universidad de las Américas, CENTIA, Sta. Catarina Mértir, Cholula, Puebla,
72820 México
{josorio,sc098382,s0l}0mail .udlap.mx,
2 LIRIS UMR 5205 CNRS, Université Lyon 1 and INSA de Lyon, 43 bd du 11
novembre, 69622 Villeurbanne cedex, France
{claudia.zepeda,christine.solnon}@liris.cnrs.fr

Abstract. A useful approach for expressing preferences, temporal pref-
erences and multidimensional preferences over plans is language PP. In
this paper we give an overview of a real application of this language:
Evacuation planning. Moreover, we remark on some limitations of PP
when the size of the preference is not known or is long. Then we ex-
tend PP by parametric preferences and we show how this extension can
overcome these limitations. Also, we give a review about how PP can
inherit all the working framework of Linear Temporal Logic to express
preferences.

Key words: Preferences, Answer Set Planning, Linear Temporal Logic.

1 Introduction

Using Answer Set Programming (ASP) [4] makes it possible to describe a com-
putational problem as a logic program whose answer sets correspond to the
solutions of the given problem. Currently, there are several answer set solvers,
such as: DLV! and SMODELS?. The objective of our work is to investigate and
evaluate the applicability of ASP to represent disaster situations in order to give
support in definition of evacuation plans. The goal of which is to find actions to
perform to put out of risk the population living in the disaster zone.

Given a planning problem expressed in an action language, it is possible
to define an answer set encoding of it [2]. Then, it is possible to obtain the
solution of the planning problem (the plans) from the answer sets of its answer set
encoding [2]. However, given a planning problem we may obtain a large number
of solutions. In this case, we need to specify preferences to select the “best”
of those plans. To specify such preferences among feasible plans, [9] introduced
a new language named PP. We consider language PP because it allows us to
express temporal preferences over plans and at different levels: the preferences in
PP are based on the occurrence of an action in a plan, on the fluents that define

! http://www.dbai.tuwien.ac.at /proj/dlv/
2 http://www.tcs.hut.fi/Software/smodels/

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 255-264

256 C. Zepeda, M. Osorio, C. Solnon, D. Sol

a state in the plan, on the moment when an action occurs or a fluent holds in
a state or on some combination of all them. The preferences representing time
are expressed using the temporal connectives nezt, always, until and eventually.
We think that in evacuation planning it is very useful to express preferences in
terms of time. In particular they are useful, when it is not possible that evacuees
follow the pre-defined evacuation plan since part of the route becomes blocked.
Then, they should follow an alternative evacuation plan.

1
T N 2 r—~.— =3 D
Town 1—Bus A
1 ~
—— No route ! I E !

(D) retuee -
....... Route 1 >

o~
— — Route2 L

, Tl No refuge

— - Route3 3 Risk level

Fig. 1. Three evacuation routes: A short example.

For instance, let the directed graph in Figure 1 be a short representation of
three evacuation routes in a particular zone. We define a preference about bus
B, denoted as @, to express: it is preferred that bus B travels by evacuation
route 2 (path: 12, 13, 8, 9 and 11) until it arrives to its assigned refuge (node
11). Let us notice that preference ¢ is specifying a disjunction consisting of the
different options that bus B has to travel by arcs belonging to evacuation route
2:
until(occ(travel(busB, 12,13, 1)) V occ(travel(busB, 13,8,1)) V

occ(travel(busB,8,9,1)) V occ(travel (busB,9,11,1)) ,
position(busB,11)).

However, let us suppose evacuation route 2 has a large number of arcs. Then, in
order to express ¢ in a similar way we would have to specify a large disjunction
consisting of all arcs in the new evacuation route 2. Moreover, if this evacuation
route change then we have to change also the preference. Despite in [9] it is indi-
cated that in PP fluents and actions with variables are shorthand representing
the set of their ground instantiations, the idea of using fluents and actions with
variables is not enough to represent this type of problems.

Hence, there are some problems that can not be expressed in PP in a simple
and natural manner. In order to have a natural representation of these kind of
preferences and inspired by [7], in this paper we define PPP?" language an exten-

Extending and applying PP language: An answer set planning problem language 257

sion of PP language where propositional connectives and temporal connectives
allow us to represent compactly preferences having a particular property. For in-
stance, a natural and compact representation of preference ¢ using a parametric
or would be:

until(\/{occ(travel(busB, I,F,1)) : road(1, F,1)},position(busB, 11)).

As we have mentioned, we think that in evacuation planning it is very useful
to express preferences in terms of time. Then, in order to illustrate the usefulness
of PPP" language in evacuation planning, we shall consider the real problem of
finding alternative evacuation routes in the risk zone of volcano Popocatepetl in
Mexico.

Finally, since PP is useful to express preferences over plans where the satis-
faction of these preferences depends on time, in this paper we present a review of
the relationship between language PP and propositional Linear Temporal Logic
(LTL) [6,8]. We think that language PP could take advantage of the working
framework of LT L to express preferences.

The rest of the paper is structured as follows. In Section 2, we introduce some
fundamental definitions about planning problems and preferences. In Section 3,
we present PPPY" language. In section 4 we give an overview of a real application
using PPP" language: evacuation routes in the risk zone of volcano Popocatepetl
in Mexico. In Section 5 we review the relationship between language PP and
LTL. Finally in Section 6, we present our conclusions.

2 Background: Planning problems and preferences

An action signature is a couple (F, A) where F is a set of fluents and A is a
set of actions. A planning problem, over a signature (F, A), is a tuple (T, I,G)
where ' C P(F) x A x P(F) is a transition function such that (¢;,a;,0%) € T
means that action a; allows one to go from state o; to state o, I C F is the
initial state and G C F' is the goal. The solution of a planning problem (T, I, G)
over a signature (F, A) is a plan or a sequence of actions a1, ...,a, to achieve
its goal G starting from the initial state I, i.e. there exists a sequence of states
00,01 ...,0, such that oo = I, 0, = G and Vi € [1;n], (0;—1,0a;,0;) € T. The
sequence 0g,a1,01 ..., a4y, 0, Where o1, ..., 0, are states and (0;_1,0a;,0;) € T,
1 <i < nis called a history of the transition system 7'. A full description about
action languages can be found in [5]. Given a planning problem expressed in an
action language, it is possible to define an answer set encoding of it [2], denoted
as II(T, I, G). Then, it is possible to obtain the solution of the planning problem
(the plans) from the answer sets of II(T, I, G) [2].

Given a planning problem, we may obtain a high number of solutions. In this
case, we need to specify preferences to select the “best” of those plans. To specify
such preferences among feasible plans, [9] introduced a new language named
PP. We consider this language PP because it allows us to express temporal
preferences over plans: the preferences in PP are based on the occurrence of an

258 C. Zepeda, M. Osorio, C. Solnon, D. Sol

action in a plan, on the fluents that define a state in the plan, on the moment
when an action occurs or a fluent holds in a state or on some combination of
all them. The preferences representing time are expressed using the temporal
connectives next, always, until and eventually. The combination of them can be
defined using three different classes of preferences:

—A basic desire, denoted as , is a PP formula expressing a preference about a
trajectory with respect to the execution of some specific action or with respect
to the states that the trajectory gets when an action is executed.

—An atomic preference, denoted as ¥ = 1 <pa<...dpy, is a formula that gives
the order in which a set of basic desires formulas should be satisfied.

—A general preference is a formula based on atomic preferences.

The set of basic desires of language PP can be defined inductively by the
following context-free grammar Gpp := (N, X, P, S), such that N := {S} is the
finite set of non terminals; X' := A U Fp is the finite set of terminals (N N X =
() where A and Fp represent the set of actions of the planning problem and
the set of all fluent formulas (propositional formulas based on fluent literals)
respectively; S € N is the initial symbol of the grammar; and P := {S —
plgoal(p)|occ(a)|SAS|SVS|-S|next(S)|until(S, S)|always(S)|eventually(S)}
is the finite set of productions or rules where p € Fr and a € A.

Due to lack of space, we do not explain how to obtain the most preferred plan
of a planning problem with respect to the different classes of preferences in PP,
however in [9] there are different alternatives to obtain them. Moreover, in [10]
we show how we can obtain the most preferred plan with respect to an atomic
preference using a simpler and easier encoding than the encoding proposed in
[9].

3 PPP language

Inspired in [7] we define PPP" language, an extension of PP language, where
propositional connectives and temporal connectives allow us to represent com-
pactly basic desires having a particular property.

3.1 Parametric basic desires

In PP fluents and actions with variables are shorthand representing the set of
their ground instantiations. However, we need to specify when an action or fluent
have variables. Let FY¢ be the set of fluents with variables and/or constants.
Let AY¢ be the set of actions with variables and/or constants. A desire set B is
{D :ty,...,tp,} where D is (1) a fluent f € For (2) a formula of the form occ(a)
where a € AV or (3) a formula of the form goal(p) where p € F"¢ and t1,...,t,
is a conjunction of literals 3. Let B be the set of desire sets. A parametric and
is A\ B where B is a desire set. A parametric oris \/ B where B is a desire set.

3 A variable or a constant is a term. An atom is p(t1,...,t,) where p is a predicate of
arity n and t1,...,t, are terms. A literal is either an atom a or the negation of an
atom not a.

Extending and applying PP language: An answer set planning problem language 259

GPor .= (NPor ypor prar G) s the context-free grammar that defines the set of
parametric basic desires where NP := {S}; XPo" .= AV UF"UB; S € NPo"
is the initial symbol of the grammar; and the finite set of productions or rules
is PP" such that PP := {S — p | goal(p) | occ(a) | AB| \VB|SAS|SV
S | =S |next(S) | until(S,S) | always(S) | eventually(S)} where p € Fp,
a € A as in language PP and B € B. For example, a parametric basic desire is:

until(\/{occ(travel(busB, I1,F,1)) : road(1, F,1)},position(busB,11)),

where the desire set is: {occ(travel(busB, I, F,1)) : road(I, F,1)}.

3.2 Basic desire instantiation and satisfaction

Given a parametric basic desire ¢ of a planning problem P = (T,I,G) over a
signature (F, A), let C = FUAUBK denote the set of constants appearing in P
where BK is the background knowledge of the problem (for instance the set of
nodes and segments defining the directed graph could be part of the background
knowledge). A substitution s is a mapping from a set of variables to the set
C. Given a desire set B = {D : ty,...,t,}, the instantiation of set B is the
following ground set B’ = {{s(D) : s(t1)...s(tn)} | s is a substitution}; B’ is
called ground desire set. A ground instance of a parametric basic desire ¢ is
obtained if every desire set B in ¢ is replaced by its instantiation B’.
For instance, let ¢ be the parametric basic desire described in Section 1:

until(\/{occ(travel(busB, I,F,1)) : road(I, F,1)},position(busB, 11)).

If we consider the directed graph in Figure 1 then, the ground instance of ¢
is the following;:

until(occ(travel(busB,12,13,1)) V occ(travel (busB, 13,8,1)) V
occ(travel(busB, 8,9,1)) V occ(travel(busB,9,11,1)) ,position(busB, 11)).

Given a history a = sga;$1a283 ... a,8, of a planning problem (see section
2) and ¢ a basic desire formula, in [9] is defined when « satisfies ¢ (written
as o |=). Since a parametric basic desire works as an abbreviation of a basic
desire, given a parametric basic desire ¢’ and an history « it is enough to apply
over the ground instance of ¢’ the definition of satisfaction for basic desires given
in [9] to check whether « satisfies ¢’.

4 Finding alternative routes in the risk zone of volcano
Popocatepelt

Let us consider the real problem of finding alternative evacuation routes in
the risk zone of volcano Popocatepet]l in Mexico. Nowadays, “Plan Operativo
Popocatepet]” office in Mexico (POP office) is responsible of assuring safety of

260 C. Zepeda, M. Osorio, C. Solnon, D. Sol

the people living in the risk zone of the volcano in case of an eruption. For this
purpose, POP office has defined ten evacuation routes. However, some hazards
that can accompany volcano eruptions (mud flows, flash floods, landslides and
rockfalls, etc.) can result on the blocking of the pre-established routes. The al-
ternative evacuation route problem can be stated as follows: There is a set of
predefined evacuation routes for people living in the risk area. Evacuees should
travel by these routes. In case of part of an evacuation route becomes inacces-
sible, then evacuees should search an alternative path. This alternative path can
belong or not to another evacuation route. If it does not belong to an evacuation
route then it should arrive to some point belonging to an evacuation route, to
some refuge or to some place out of risk.

Previously we have worked in this problem *. We have a detailed description
of the problem. Also we have presented a partial solution to it using CR-Prolog
[1], an extension of ASP with consistency restoring rules. Another partial so-
lution to this problem shows how CR-Prolog programs can be translated into
standard ordered disjunction logic programs as defined by Brewka [3] .

In this paper is given an overview of a more complete solution of the problem
about finding alternative evacuation routes using language PPP*".

We represent the network of roads between towns in the risk zone as a directed
graph. This representation was created from an extract of our GIS database and
contains real evacuation routes, towns (mostly in risk, but nearby towns not in
direct risk are also included) and some additional segments that do not belong to
any evacuation route, since these segments are necessary to obtain the alterna-
tive evacuation plans. We define a directed graph where nodes represent towns
and evacuation routes are paths in the graph. Each segment is represented by
road(P,Q,R) where P and Q are nodes and R is the route number. Segments with
route number different of zero belong to some evacuation route. An exogenous
action which causes road (P,Q,R) to become blocked results in a fact of the form
blocked(P,Q,R). The action travel (P,Q,R) allows to travel from P to Q if there
is an unblocked segment of road from P to Q. We assumed that each action takes
one unit of time. In particular, if we consider the directed graph in Figure 1 then
we are considering three evacuation routes where the buses A, B and C' travel
from an initial location to the assigned refuge. Also we can define II(D, I, G) as
follows:

% initial and final conditions

initially(position(busA, 1, 3)).

initially(position(busB, 12, 2)).
initially(position(busC, 14, 1)).
finally(position(B,N,R)) :- bus(B), node(N,R), refuge(N).
% fluents

fluent (position(B,Q,R)) :- bus(B), node(Q,R).
fluent(blocked (P,Q,R)) :- road(P,Q,R).

% actions travel by a segment of road

4 We do not write the references of the work since it is not allowed write self-references
in the paper.

Extending and applying PP language: An answer set planning problem language 261

action(travel(B,P,Q,R)) :- bus(B),road(P,Q,R).
% Dynamic causal laws

caused(position(B,Q,R),travel(B,P,Q,R)) :- bus(B),road(P,Q,R).
caused(neg(position(B,P,R)) ,travel (B,P,Q,R)) :- bus(B),road(P,Q,R).
% Executability Conditions

noaction_if (travel(B,P,Q,R) ,neg(position(B,P,R))):- bus(B),road(P,Q,R).
noaction_if (travel(B,P,Q,R),blocked(P,Q,R)) :- bus(B),road(P,Q,R).

Using PPP*" we define the following parametric basic desires in order to define
the associated atomic preference of this planning problem.

—travelERass to express that it is preferred that always buses travel by the
evacuation route assigned by the government until they arrive to the refuge:
travel ERass := until(always(\/{occ(travel(busA, I, F,3)) : road(I, F,3)}),
position(busA, 3) YA until(always(\/{occ(travel(busB, I, F,2)) : road(I, F,2)}),
position(busB,11))A until(always(\/{occ(travel(busC, I, F,1)) : road(I, F,1)}),
position(busC, 16))

—travel ER to express that it is preferred that always buses travel by roads
belonging to some evacuation route and it is not important if they travel or not
by its assigned evacuation route (neq denotes #):
travel ER := until(always(\/{occ(travel(B, I, F, R)) : bus(B),road(I, F, R), neq(R,0)}
)s A{position(B, Fi) : bus(B),refuge(Fi)}))

—arriveER to express that it is preferred that buses travel out of the evacua-
tion route assigned until they travel by an evacuation route to arrive at a refuge:
arriveER := until (always(\/{occ(travel(B, I, F,0)) : bus(B),road(I, F,0),}), un-
til (\/{occ(travel(B, I, F, R)) : bus(B),road(I, F, R),neq(R,0)} , A{position(B, F1) :
bus(B),refuge(Fi)}))

In a similar way we could express that always buses travel by a road out of an
evacuation route until they arrive to any place with or without refuge (arriveR)
or any other parametric basic desire.

A possible atomic preference 1 indicating the order in which the set of para-
metric basic desires formulas should be satisfied is the following:

1 = travel ERass < travel ER < arrive ER < arriveR
The atomic preference 1 says that plans satisfying travel E Rass are preferred,
but otherwise plans satisfying travel ER are preferred, and so forth. Considering
the set of segments of the directed graph in Figure 1 with no blocked segments,
the most preferred trajectory w.r.t. v is:
time 1: travel(busB,12,13), travel(busC,14,16), travel(busA,1,2);
time 2: travel(busB,13,8), travel(busA,2,3);
time 3: travel(busB,8,9);
time 4: travel(busB,9,11).

We can see that this most preferred trajectory satisfies the parametric basic
desire travelERass of the atomic preference 1 since all the buses travel by the
evacuation route assigned by the government, exactly as POP office indicates.
Now, if we consider the set of segments of the directed graph in Figure 1 but
we add the initial condition initially(blocked(1,2,3)) to the program P (i.e. the
first segment of road of evacuation route 3 is blocked). Then the most preferred

262 C. Zepeda, M. Osorio, C. Solnon, D. Sol

trajectory w.r.t. ¢ is the same for buses B and C' but for bus A the route is
travel(busA,1,14) in time 1 and travel(busA, 14,16) in time 2. In this case, the
most preferred trajectory satisfies the parametric basic desire arriveER of the
atomic preference 1, since bus A travels by a road out of any evacuation route
until it arrives to node 14 of evacuation route 1 and then it get to a refuge.

5 The relationship between language PP and Temporal
Logic

In this section, we review the relationship between language PP and proposi-
tional Linear Temporal Logic (LTL) [6,8]. Since PP is useful to express pref-
erences over plans where the satisfaction of these preferences depend on time,
the goal of this review is to show how PP can inherit all the working framework
of LTL. Then language PP could take advantage of the working framework of
LTL to express preferences. In LT L all temporal operators are future time op-
erators, meaning that at a given state one can only reason about the present
and future states. Normally, in LT L is assumed that the set of time points is
infinite, discrete an linearly ordered with a smallest element. However, in this
paper we are interested in a LTL [8] where the set of time points is finite since
plans of planning problems are finite that we will call FLTL.

5.1 Finite Temporal Logic

The language of FLTL [6,8] is given by the context-free grammar Gr :=
(N, X, P,S) where N := {S} is the finite set of non terminals; ¥ := VU {L,—
,O,A\,U} is the finite set of terminals such that V is the set of atomic for-
mulas and (NN X # (); S € N is the initial symbol of the grammar; and
P:={5—p|SAS|S— S|OS|SU S} is the finite set of productions or rules
where p € .

In order to omit superfluous parentheses, the priority order of the operators is
established as usually. F LT L formulas are denoted as A, Ay,..., B, Bi,.... The
operator ()A, called nezttime operator, reads “A holds at time point immediately
after the reference point (the present time)”. The operator A U B, called until
operator, reads “A holds until B is true”. Other operators can be introduced as
abbreviations, e.g., A, V, <, true, false as in classical logic; —A for A — 1; 0A
for true U A; OA for ~O0—A. The operator ¢ A, called eventually operator, reads
“There is a time point after a reference point at which A holds”. The operator
OA, called always operator, reads “A holds at all time points after the reference
point”.

The semantics of FFLTL is based on a temporal structure K that consists of a
finite sequence {no, ...n,} of mappings 7, : V — {f,t}, the n; are called states.
o is the initial state. The finite sequence of states formalizes the informal time
scale; a state is a “time point”. Every state is a valuation in the classical sence.
For every temporal structure K, every i € Ny and every formula F', the truth
value K;(F) € {f,t} is inductively defined , informally meaning the “truth value
of F in state n; ” [6, 8]:

Extending and applying PP language: An answer set planning problem language 263

1. K;(v) = n;(v) for v € V.
5. Ki(AU B) =t iff K;(B) =t for some i < j <n and K;(A4) =t for every
ki <k<j.

In the axiomatization of temporal logic over finite sequences it is important
to recognize the final state of the sequence. Moreover, for preferences about
evacuation plans it is important to recognize the state where the goal is achieved.
Then, the semantics for ()A that we presented above has the property that
Ofalse is true at the final state [8]. However, we can define other two alternative
semantics for O A:

— K, (QA) =t iff K;;11(A) = t. This semantics has the property that = O true
is true only at the final state. Also, this semantics is similar to the semantics of
the operator next (1) of language PP.

— K;(QA) =t iff K;11(A) =t for 0 <i < n and K,(OQA) = n,(A). In this
semantics the truth value for ()A at the final state depends on the true value of
formula A. Then, the semantics of ()A has the property that the final state of
the plan is infinitely repeated. Using this semantics for ()A we could abbreviate
the operator goal(A) of language PP that reads “A holds at the final state”
as follows: A A = O true. Moreover, we think that this semantics for ()A could
be the most suitable for evacuation planning, because of the fact that once we
are in the final state this state remains without changes. For instance, once the
evacuees have achieved the shelter assigned they will remain there.

5.2 Inheriting the FLTL work framework to language PP

In order to inherit all the FLTL work framework to language PP we need to
do the following: (1) transforming each history « of a planning problem into a
finite temporal structure K ; (2) transforming the basic desire formula ¢ into a
temporal formula Fy,; and (3) obtain the truth value of K;(F,).

Let P be a planning problem and o = sga151a253 . ..a,S, a history of P.
Let F be the set of fluents of P and A be the set of actions of P. Let S be the

set of states in a, i.e., S= {sg, $1,...,5n}. The transformation of the history
« into a finite temporal structure K, is described as follows: First, we define
a transformation function T' of an action a € A as follow: T'(a) := f, where

fa is a fluent and f, € F. Also, we define a straightforward generalization of
T over A, the set of actions, as follows: T(A) = {T'(a)la € A}. Then, the
finite temporal structure K, consists of a finite sequence {7y, ...n, } of mappings
7, : SUT(A) — {f,t}. Every n; is a valuation defined as follows: n;(f,,) = t iff
a; € a and 17;(s;) =t iff s; € a.

In order to transform a basic desire formula ¢ into a temporal formula F,,
we only replace each occurrence of occ(a) in ¢ for the fluent obtained from T'(a).

Finally, for every history @ = sgaj;sias2ss...a,s, and its finite temporal
structure K, every i € Ny and every temporal formula F, obtained from the

264 C. Zepeda, M. Osorio, C. Solnon, D. Sol

basic desire formula ¢, the truth value Kq;(F,) € {f,t} is inductively defined
in the same way as it is defined for a formula in F'LTL.

6 Conclusions

In this paper we give an overview of a more complete solution of the problem
about finding alternative evacuation routes using language PPP*". In particular
we test the usefulness of PPP*" finding alternative evacuation routes in the risk
zone of volcano Popocatepetl in Mexico. Due to lack of space we only show an
example with a short number of evacuation routes, however we have tested with
a larger number of segments representing the real zone of volcano Popocatepetl.
Also, we review the relationship between PP and Linear Temporal Logic. Since,
it is useful to express preferences over plans where the satisfaction of these
preferences depend on time, the goal of this review is to show how PP can inherit
all the working framework of LT L. Then language PP could take advantage of
the working framework of LT L to express preferences.

References

1. Marcello Balduccini and Michael Gelfond. Logic Programs with Consistency-
Restoring Rules. In Patrick Doherty, John McCarthy, and Mary-Anne Williams,
editors, International Symposium on Logical Formalization of Commonsense Rea-
soning, AAAT 2003 Spring Symposium Series, Mar 2003.

2. Chitta Baral. Knowledge Representation, reasoning and declarative problem solving
with Answer Sets. Cambridge University Press, Cambridge, 2003.

3. Gerhard Brewka. Logic Programming with Ordered Disjunction. In Proceedings
of the 18th National Conference on Artificial Intelligence, AAAI-2002. Morgan
Kaufmann, 2002.

4. Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic
Programming. In R. Kowalski and K. Bowen, editors, 5th Conference on Logic
Programming, pages 1070-1080. MIT Press, 1988.

5. Michael Gelfond and Vladimir Lifschitz. Action languages. Electron. Trans. Artif.

Intell., 2:193-210, 1998.

Fred Kroger. Temporal Logic of Programs. Springer Verlag, Berlin, 1987.

7. Nicola Leone and Simona Perri. Parametric Connectives in Disjunctive Logic Pro-
gramming. In ASP03 Answer Set Programming: Advances in Theory and Imple-
mentation, Messina, Sicily, September 2003.

8. R. Pucella. Logic column 11: The finite and the infinite in temporal logic. ACM
SIGACT News, 36(1):86-99, 2005.

9. Tran Cao Son and Enrico Pontelli. Planning with preferences using logic program-
ming. In LPNMR, pages 247-260, 2004.

10. Claudia Zepeda, Mauricio Osorio, Juan Carlos Nieves, Christine Solnon, and David

Sol. Applications of preferences using answer set programming. In Submmited to
Answer Set Programming: Advances in Theory and Implementation (ASP 2005).

o

